# District Cooling System at Kai Tak Development

#### **Content**

- Background
- District Cooling System (DCS) at Kai Tak
- Benefits of DCS
- DCS Connection
- Technical Guidelines for DCS Connection / Supply Rules on District Cooling Services (DCServ)
- DCServ Charging Mechanism & New Legislation for DCServ
- Way forward

#### **Background**

- 2008-09 Policy Address pledged to implement a District Cooling System (DCS) at Kai Tak Development (KTD) to further promote energy efficiency and conservation, and to reduce carbon dioxide emission substantially.
- DCS produces chilled water at central chiller plants and distributes the chilled water to user buildings through underground pipes for air-conditioning purpose
- DCS common in overseas jurisdictions (Singapore, France, the U.S.A., etc.)

#### **Benefits of DCS**

- 1. Better Utilization of Building Space
  - No chiller and heat rejection equipment plant space required
  - Only heat exchangers of much smaller size are to be installed
  - The space saved can be used for other purposes





- 2. Benefits to the District Environment
  - Eliminate noise & vibration arising from local chillers inside buildings
  - ➤ Eliminate nuisances to occupants & adjacent buildings from heat rejection equipment
- > Reduce 'heat island' effect of the district

#### **Benefits of DCS**

- 3. Savings in Electricity Consumption
- Individual Building
  - Consumes 35% less electricity than air-cooled A/C system
  - Consumes 20% less electricity than water-cooled A/C system using cooling towers
- Society saving up to 85 million kWh per annum (and a reduction of 59,500 tonnes of carbon dioxide emission per annum) for the KTD, when fully developed

Electricity Saving up to 85 million kWh/yr

#### **Benefits of DCS**

- 4. Others
- Reduce upfront capital cost for installing chiller plants at buildings
- More adaptable than individual A/C system to varying cooling demand
- > Enhanced system reliability
  - multiple chiller sets, dual feed electricity supply, ring (or redundant) main pipe circuits, leakage detection system, etc.
  - secured chilled water supply with suitable allowance of flexibility for maintenance.
  - service quality and reliability will be overseen by EMSD.









#### **DCS Connection**

- The Government will implement DCS in KTD as a requirement for -
  - (a) environmental protection and energy efficiency reasons;
  - (b) enhancing overall cost effectiveness of the infrastructure.
- Required connection to DCS in all nondomestic projects in the KTD by attaching requirements in land leases

#### **Land Lease Conditions**

#### Key approach -

- ➤ For developments which adopt central A/C system using chilled water;
- ➤ Landlord to design and construct DCS substations for connection to DCS and thereafter maintain them all at his own cost;
- Reserve right of access for the purpose of installing, inspecting, testing, operating, maintaining, repairing and carrying out replacement of DCS equipment/installation

#### **Land Lease Conditions**

- Floor space for DCS substations will be excluded from calculation of total GFA
- Floor space for back-up central air-conditioning systems, subject to the approval by DEMS, will be excluded from calculation of total GFA (but shall not in the aggregate exceed 10% cap)
- Floor space for central air-conditioning systems not regarded as back-up shall be included in the calculation of total GFA

#### **DCS** Connection

- LandsD, based on the advice of EMSD, would check compliance with the land lease conditions before the issue of Certificate of Compliance
- Proposal Supported by Lands Sub-Committee in December 2010
- EMSD will issue technical guidelines listing out the installation requirements for DCS connection and Supply Rules for District Cooling Services

#### **Technical Guidelines for DCS Connection**

To give technical details for -

- Design and construction of DCS Substation (by Landlord)
- Builders' works for DCS pipes (by Landlord)





- Installation of Heat Exchangers (by EMSD)
- Installation of Metering (by EMSD)
- Provision of access for operation and maintenance (by Landlord)

#### **Supply Rules for District Cooling Services**

To give conditions for DCServ -

- Obligations of EMSD or service contractor and the Consumer
- Chilled Water Supply Temperature, Quality and Capacity
- Back-up Chiller Plants by Consumer
- Application Procedure for DCServ Connection and Changes
- Refusal and Disconnection of DCServ
- Accommodation for DCServ Equipment
- Metering of Chilled Water Supply, etc.

Principles -

- The tariff level will be monitored/adjusted under the legislative framework
- Cost recovery in 30 years (incl. capital & recurrent costs)
- DCServ tariff is set comparable to the cost of individual water-cooled A/C system (WACS) using cooling towers
- Incorporate Internal Rate of Return (IRR)
- Simple charge structure to all customers
- Provide price stability

# **DCServ Charging Mechanism**

- Two Tariff Components -
  - Capacity Charge
  - Consumption Charge
- Developed based on international practice

- Capacity charge recovers -
  - cost of capital investment
  - cost of operations and maintenance (O&M) e.g.
    equipment operation & maintenance cost, staff cost and emergency repair cost

# **DCServ Charging Mechanism**

- Consumption charge recovers -
  - cost of electricity
  - cost of water (negligible as compared with cost of electricity)
  - cost of variable O&M, e.g. consumables associated with lubrication, water treatment (included as part of fixed O&M cost)

• Capacity Charge Rate – derived based on

(NPV of cost of capital investment + NPV of cost of O&M and other cost)

NPV of cooling capacity (kWr)

NPV = net present value

# **DCServ Charging Mechanism**

• Consumption Charge Rate – derived based on

Cost of purchased electricity

Cooling energy consumed (kWhr)

Tariff Adjustment Mechanism

Annual Adjustment on Capacity Charge Rate -

$$C_{n+1} = C_n(1 + CPI_n)$$

where

C<sub>n</sub> = Capacity Charge Rate at nth period

 $C_{n+1}$  = Capacity Charge Rate at (n+1)th period

CPI<sub>n</sub> = Composite Consumer Price Index (CCPI) at nth period

# **DCServ Charging Mechanism**

**Tariff Adjustment Mechanism** 

Annual Adjustment on Consumption Charge Rate -

$$EC_{n+1} = EC_n (E_{n+1} / E_n)$$

 $EC_{n+1}$  = Consumption Charge Rate at (n+1)th period  $EC_n$  = Consumption Charge Rate at nth period  $E_{n+1}$  = average net electricity tariff rate chargeable by the power company providing power supply to the concerned DCS at (n+1)th period

En = average net electricity tariff rate chargeable by the power company providing power supply to the

concerned DCS at nth period

Tariff Adjustment Mechanism

- Regular Tariff review
  - apart from the annual tariff adjustment, a tariff review once every 5 years to account for possible deviations from projectsions, e.g. capital cost, development schedule, major technological advancement, CCPI, actual cooling demand, etc.

# **DCServ Charging Mechanism**

Implementation

- Meter will be installed in each building DCS substation to measure cooling capacity required and cooling energy consumed
- Tariff will be collected monthly by the Government (EMSD)
- Other costs to be imposed:
  - Deposit
  - Capacity overrun charge: 10% extra for the overrun part (when the consumer's cooling demand exceeds the contract capacity on a short-term basis)
  - Financial penalties for unpaid charges

- Capacity Charge
  - = Capacity Charge Rate x Contracted Capacity

If Measured Capacity > Contracted Capacity

- = Capacity Charge Rate x (Contracted Capacity +
- 1.1 \* (Measured Capacity Contracted Capacity))
- Consumption Charge
  - = Consumption Charge Rate x Consumed Energy

### **New Legislation for DCServ**

The legislation will mainly cover -

- charges of DCServ
- mechanism of annual adjustment of tariff rate
- tariff review mechanism
- other charges, e.g. capacity overrun charge, deposit, financial penalties for unpaid charges
- right of access to buildings for inspection and maintenance
- improvement notice
- appeal to the Administrative Appeals Board
- future DCS build in flexibility to cover charging for other DCS to be constructed by the Government

# **Way Forward**

- Commence DCServ to first package of development in KTD in late 2012/13 (including Cruise Terminal and nonresidential development in Housing Estates)
- Submission of the proposed legislation to LegCo in 2012/13 LegCo session

# Views Invited

# Thank You